21 research outputs found

    Towards emotion recognition for virtual environments: an evaluation of eeg features on benchmark dataset

    Get PDF
    One of the challenges in virtual environments is the difficulty users have in interacting with these increasingly complex systems. Ultimately, endowing machines with the ability to perceive users emotions will enable a more intuitive and reliable interaction. Consequently, using the electroencephalogram as a bio-signal sensor, the affective state of a user can be modelled and subsequently utilised in order to achieve a system that can recognise and react to the user’s emotions. This paper investigates features extracted from electroencephalogram signals for the purpose of affective state modelling based on Russell’s Circumplex Model. Investigations are presented that aim to provide the foundation for future work in modelling user affect to enhance interaction experience in virtual environments. The DEAP dataset was used within this work, along with a Support Vector Machine and Random Forest, which yielded reasonable classification accuracies for Valence and Arousal using feature vectors based on statistical measurements and band power from the and waves and High Order Crossing of the EEG signal

    Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing

    Get PDF
    Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities

    Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics

    Get PDF
    Emotion recognition through computational modeling and analysis of physiological signals has been widely investigated in the last decade. Most of the proposed emotion recognition systems require relatively long-time series of multivariate records and do not provide accurate real-time characterizations using short-time series. To overcome these limitations, we propose a novel personalized probabilistic framework able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively. The study includes thirty subjects presented with a set of standardized images gathered from the international affective picture system, alternating levels of arousal and valence. Due to the intrinsic nonlinearity and nonstationarity of the RR interval series, a specific point-process model was devised for instantaneous identification considering autoregressive nonlinearities up to the third-order according to the Wiener-Volterra representation, thus tracking very fast stimulus-response changes. Features from the instantaneous spectrum and bispectrum, as well as the dominant Lyapunov exponent, were extracted and considered as input features to a support vector machine for classification. Results, estimating emotions each 10 seconds, achieve an overall accuracy in recognizing four emotional states based on the circumplex model of affect of 79.29%, with 79.15% on the valence axis, and 83.55% on the arousal axis

    The Effect of Lateralization of Motor Onset and Emotional Recognition in PD Patients Using EEG

    Get PDF
    The objective of this research was to investigate the relationship between emotion recognition and lateralization of motor onset in Parkinson’s disease (PD) patients using electroencephalogram (EEG) signals. The subject pool consisted of twenty PD patients [ten with predominantly leftsided (LPD) and ten with predominantly rightsided (RPD) motor symptoms] and 20 healthy controls (HC) that were matched for age and gender. Multimodal stimuli were used to evoke simple emotions, such as happiness, sadness, fear, anger, surprise, and disgust. Artifactfree emotion EEG signals were processed using the auto regressive spectral method and then subjected to repeated ANOVA measures. No group differences were observed across behavioral measures? however, a significant reduction in EEG spectral power was observed at alpha, beta and gamma frequency oscillations in LPD, compared to RPD and HC participants, suggesting that LPD patients (inferred righthemisphere pathology) are impaired compared to RPD patients in emotional processing. We also found that PD related emotional processing deficits may be selective to the perception of negative emotions. Previous findings have suggested a hemispheric effect on emotion processing that could be related to emotional response impairment in a subgroup of PD patients. This study may help in clinical practice to uncover potential neurophysiologic abnormalities of emotional changes with respect to PD patient’s motor onset
    corecore